On Eigenvectors of Nilpotent Lie Algebras of Linear Operators
نویسندگان
چکیده
We give a condition ensuring that the operators in a nilpotent Lie algebra of linear operators on a finite dimensional vector space have a common eigenvector. Introduction Throughout this paper V is a vector space of positive dimension over a field f and g is a nilpotent Lie algebra over f of linear operators on V . An element u ∈ V is an eigenvector for S ⊂ g if u is an eigenvector for every operator in S. If V has a basis (e1, . . . , en) representing each element of g by an upper triangular matrix, then e1 is an eigenvector for g. Such a basis exists when f is algebraically closed and g is solvable (Lie’s Theorem), and also when every element of g is a nilpotent operator (Engel’s Theorem). Our results are further conditions guaranteeing existence eigenvectors. The minimal and characteristic polynomials of a linear operator A on V are denoted respectively by πA, μA ∈ f[t] = the ring of polynomials over f. written #S. Let k be a Galois extension field of f of degree d := [k : f], and define M ⊂ N to be the additive monoid generated by zero and the prime divisors d. Consider the conditions: (C1) μA splits in k for every A ∈ g (C2) dimV / ∈ M Our main result is: Theorem 1 If (C1) and (C2) hold then g has an eigenvector.
منابع مشابه
Some properties of nilpotent Lie algebras
In this article, using the definitions of central series and nilpotency in the Lie algebras, we give some results similar to the works of Hulse and Lennox in 1976 and Hekster in 1986. Finally we will prove that every non trivial ideal of a nilpotent Lie algebra nontrivially intersects with the centre of Lie algebra, which is similar to Philip Hall's result in the group theory.
متن کاملOn dimension of a special subalgebra of derivations of nilpotent Lie algebras
Let $L$ be a Lie algebra, $mathrm{Der}(L)$ be the set of all derivations of $L$ and $mathrm{Der}_c(L)$ denote the set of all derivations $alphainmathrm{Der}(L)$ for which $alpha(x)in [x,L]:={[x,y]vert yin L}$ for all $xin L$. We obtain an upper bound for dimension of $mathrm{Der}_c(L)$ of the finite dimensional nilpotent Lie algebra $L$ over algebraically closed fields. Also, we classi...
متن کاملThe structure of a pair of nilpotent Lie algebras
Assume that $(N,L)$, is a pair of finite dimensional nilpotent Lie algebras, in which $L$ is non-abelian and $N$ is an ideal in $L$ and also $mathcal{M}(N,L)$ is the Schur multiplier of the pair $(N,L)$. Motivated by characterization of the pairs $(N,L)$ of finite dimensional nilpotent Lie algebras by their Schur multipliers (Arabyani, et al. 2014) we prove some properties of a pair of nilpoten...
متن کاملBounds for the dimension of the $c$-nilpotent multiplier of a pair of Lie algebras
In this paper, we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations. By a priori estimates, difference and variation techniques, we establish the existence and uniqueness of weak solutions of this problem.
متن کاملSolvable Lie algebras with $N(R_n,m,r)$ nilradical
In this paper, we classify the indecomposable non-nilpotent solvable Lie algebras with $N(R_n,m,r)$ nilradical,by using the derivation algebra and the automorphism group of $N(R_n,m,r)$.We also prove that these solvable Lie algebras are complete and unique, up to isomorphism.
متن کامل